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STRUCTURE OF CHEMICALLY NONEQUILiBRIUM FLOWS 

WITH A SUDDEN CHANGE IN THE TEMPERATURE 

AND THE CATALYTIC PROPERTIES OF THE SURFACE 

V. V. Bogolepov, I. I. Lipatov, and L. A. Sokolov UDC 533.6.011.8 

The problem of chemically nonequilibrium flows in the neighborhood of a point where 
there is a sudden change in the temperature or the catalytic properties of the surface of 
a body is of undoubted interest from both theoretical and practical standpoints~ Thus, the 
authors of [1-4] studied the effect of discontinuity of the catalytic properties of the 
surface on flow about the body within the framework of laminar boundary layer theory or 
the theory of hypersonic viscous shock layers. The problem was examined in [5-7] in a 
formulation which was the same except for the introduction of a hypothetical boundary layer 
immediately after the point of discontinuity: with the use of simplifying assumptions, 
the investigators succeeded in obtaining an analytic solution for the flow functions in 
the neighborhood behind the point of discontinuity of surface catalytic properties. 

To describe the apstream propagation of disturbances from the point of discontinuity - 
such propagation being absent for boundary-value problems of the parabolic type [i-7] - the 
authors of [8-10] considered longitudinal diffusion in a certain region of the point; the 
substantiation for such a flow model for a removable discontinuity was presented in [ii], 
where investigators made use of the method of combinable asymptotic expansions [12]. This 
method has already been used to solve many problems involving singular perturbations in 
fluid mechanics (see [13, 14] and their bibliographies, for example). 

When analyzing the neighborhood of a point of discontinuity of surface catalytic pro- 
perties, it is necessary to consider that in the transition from a noncatalytic surface to 
a surface which is ideally catalytic (for example), the density of the gas near the surface 
of the body is increased by a characteristic amount, i.e., the streamlines are shifted 
toward the surface of the body and the flow moves past a hypothetical depression. The main 
assumption of Prandtl's classical boundary-layer theory - that ~he longitudinal g~adients 
of the flow functions are small compared to the transverse gradients - may be invalidated 
for such flows, and it becomes necessary to use the complete Navier-Stokes equations. A 
systematic analysis of the flow regimes around small two-dimensional irregularities on the 
surface of a body was performed in [15]. A solution to the problem of surface temperature 
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discontinuity - which also reduces to the analysis of flow past a hypothetical irregulari- 
ty - was obtained in [16]. However, the results presented in this study pertain to a very 
small range of cases. 

In the current investigation, we study the neighborhood of a point of discontinuity 
of surface catalytic properties and temperature in the laminar, supersonic, chemically non- 
equailibrium flow of a binary mixture about a cold plate at Reynolds numbers approaching 
infinity. It is found that chemical reactions can take placeonly on the catalytic surface 
in the neighborhood of the point of discontinuity. We determine the main similarity param- 
eters, present distributions of induced pressure perturbations, shear stress, the normal 
gradients of enthalpy, and the mass concentration of atoms on the plate, and derive asymp- 
totic laws for the changes in these characteristics. 

i. We will examine a uniform, supersonic, chemically nonequilibrium flow of a viscous 
gas about a flat semi-infinite plate at large but subcritical Reynolds numbers Re 0. It is 
assumed that the gas is a binary mixture of atoms and diatomic molecules consisting of these 
atoms. It is further assumed that the temperature of the surface is no higher than the 
level at which the molecules begin to dissociate at the local pressure. We will study the 
effect of a sudden change in the temperature and the catalytic properties of the surface 
of the plate at a certain distance s from its leading edge on the flow past the plate and 
the plate's heating. We construct a solution to the Navier-Stokes equation together with 
the mass conservation equation of the atoms at Re 0 = p0u0s = ~-2 ~ ~ (the subscript 0 
pertains to the flow functions in the uniform incoming flow. We will henceforth use only 
dimensionless variables. To do this, we refer all of the linear dimensions to the length 
s the pressure and shear stress to double the dynamic head in the incoming flow p0u0 z, 
the enthalpy to u02, the temperature to mu02/R (m is the molecular weight of the molecular 
component of the gas and R is the universal gas constant), the heat flux to p0u03, the 
catalytic coefficient of the surface to u 0, the heat capacities to R/m, and the remaining 
flow functions to their values in the incoming flow. 

Let AT ~ T ~ 0(I) and Ac ~ c ~ 0(i), i.e., the temperature T and mass concentration 
of atoms c on the surface change within their respective orders of magnitude. Following 
the method of combinable asymptotic expansions [12], first we examine a region with the 
characteristic longitudinal and transverse dimensions x ~ y ~ 0(I). It is well known that 
at e + 0 the flow in this region is described by equations without dissipative and diffu- 
sional terms, while in the case of a plate their solution will be the undisturbed incoming 
flow. To satisfy the boundary conditions o n the surface of the plate, we also introduce 
a region with the dimensions x ~ 0(i) and y ~ O(e) - the Prandtl boundary layer. Solutions 
in this flow region with a discontinuity in the catalytic properties on the surface were 
obtained in [I-4]. However, these solutions do not describe the small neighborhood of the 
point of discontinuity. 

The sudden change in the temperature and catalytic properties of the surface of the 
plate may cause a change in the density of the gas Ap ~ p ~ 0(i) in the boundary layer. 
Assuming that the Prandtl and Schmidt numbers Pr ~ Sc ~ 0(i) in this case, we further sup- 
pose that, in the most general case, the thickness of such a boundary layer is the same 
as the thicknesses of the viscous, heat-conducting, and diffusion layers in terms of order 
of magnitude. Then using the estimate for longitudinal velocity u ~ O(y/e) (in the bound- 
ary layer, the flow functions change in proportion to the distance from the surface) and 
equating the orders of magnitude of the convective and dissipative terms of the conserva- 
tion equation for longitudinal momentum, we find an estimate for the thickness of the dis- 
turbed boundary layer Ay in relation to its length Ax ~ i: 

Ay ~ 0(sAx 1/3) <~ 8. ( 1.1 ) 

The change in the  t h i c k n e s s  of  the  boundary l a y e r  (1 .1)  l eads  to  a p r o p o r t i o n a l  d i s -  
placement of  i t s  e x t e r n a l  boundary [13] and, th rough the  i n t e r a c t i o n  wi th  the  un i form,  
super son ic  incoming f low,  i n i t i a t e s  the  p r e s su re  d i s t u r b a n c e  Ap ~ O(Ay/Ax). Assuming in 
the general case that the pressure disturbance results in nonlinear perturbations of velo- 
city u in the boundary layer (i.i) - u ~ Au ~ Ap I/2 - we find that Ap is in agreement with 
Eq. (i.i) only at 

Az N O(8~/9, Ay N 0(85/4), Ap ~ O(81/~). ( 1 . 2 )  
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These estimates determine the extent of the disturbed region of the point of discontinuity 
of surface catalytic properties and temperature. Laminar boundary-layer theory and the 
theory of hypersonic viscous shock layers are now no longer valid for this region, and it 
is necessary to take into account the induced pressure perturbation. It should also be 
noted that perturbed boundary layer (i.i) is located on both sides of the point of discon- 
tinuity of the boundary conditions, not just downstream- as was assumed in [5-7]. 

If the flow about the plate is a chemically equilibrium flow, then when its surface 
temperature is below the value at which the dissociation reaction proceeds at the local pres- 
sure, the atomic component will be absent from boundary layer (i.i) and c = 8c/8y = 0; in 
this case, only chemically nonreacting flows can be studied. In the case of nonequilibrium 
flow, all of the terms in the conservation equations for mass concentration (including the 
term that describes the rate of formation of an individual component) should be of the same 
order of magnitude O(i) [17]. Estimates (1.2) show that large gradients of the flow func- 
tions are initiated in the investigated region of the point of discontinuity (for example, 
8p/Sx ~ O(e -I/~) m i). Thus, the term which describes the rate of formation of an individ- 
ual component of the gas mixture is unimportant in this case and the flow can be regarded 
as chemically "frozen,'l with recombination reactions occurring on the surface of the plate 
[18]. Since Ap ~ O(e I/2) is an order of magnitude less than the perturbation of tempera- 
ture or the mass concentration of atoms T ~ AT ~ c ~ 5c ~ O(i) in the investigated region, 
then the effect of barodiffusion is asymptotically small. The term which describes thermo- 
diffusion is of the same order as the convective terms of the conservation equation for 
the mass concentration of atoms. However, as is customary, we will also ignore it in the 
present case due to its smallness [17]. 

2. In accordance with the method of studying interacting flows that was proposed in 
[13], it is necessary to first examine the perturbed region 1 of a uniform, supersonic in- 
coming flow with the characteristic dimensions 6 ~ x ~ y ~ O(e 3/4) ~ 1 [6 ~ O(e) is the 
thickness of the boundary layer]. The following independent variables and asymptotic ex- 
pansions of the flow functions are valid within this region 

x = 83/4xl,  y = ~3/~yl~ 

: l ' 3 f ' - ~ l / 2 M i " ~  . . . .  U : ~ l / 2 U l " J f - . . .  , p = t - 2 i " 8 1 / 2 p 1 - t -  . . . .  (2.1) 

P = Po + el/2Pl + .... h = ho + el/2hl + ... 

Substitution of expansions (2.1) into the Navier-Stokes equation and passage to the limit 
+ 0 show that, in a first approximation, the flow in region i is described by the linear- 

ized Euler equations 

0hl 8Pl O. OPl aUl Ogl 0~1 O P l = o '  Or1 O P l = o '  Ox~ Ox 1 ( 2 . 2 )  
o + + = o, + + 

System ( 2 . 2 )  i s  augmented by t h e  f o r m u l a  f o r  d e t e r m i n i n g  t h e  Math number f o r  t h e  " f r o z e n "  
sonic velocity and the relation for the enthalpy increment in the case of a mixture with 
a "frozen" chemical composition 

M2 = t - -  aMOp h~ oh oh 
Oh/Op ' = ~ Pl + "g~ Pl" ( 2 . 3 )  

E q u a t i o n s  ( 2 . 2 )  and ( 2 . 3 )  a r e  r e a d i l y  r e d u c e d  t o  a wave e q u a t i o n  whose s o l u t i o n  ( d ' h l e m -  
b e r t ' s  s o l u t i o n  f o r  e q u a t i o n s  o f  t h e  h y p e r b o l i c  t y p e )  i s  w e l l  known, and a t  Yl + 0 

V ' ~  - tp~(x .  0) = v~(~, o). ( 2 . 4 )  

S i n c e  t h e  f low i s  c h e m i c a l l y  " f r o z e n "  in  t h e  i n v e s t i g a t e d  r e g i o n  of  t h e  p o i n t  o f  d i s c o n t i n u -  
i t y  o f  t h e  s u r f a c e  p r o p e r t i e s ,  t h e n  t h e  mass c o n c e n t r a t i o n s  o f  t h e  components  o f  t h e  m i x t u r e  
r ema in  c o n s t a n t  a l o n g  t h e  s t r e a m l i n e s .  

Now we w i l l  examine p e r t u r b e d  r e g i o n  2 of  t h e  main p a r t  o f  t h e  b o u n d a r y  l a y e r  on a 
p l a t e  w i t h  t h e  c h a r a c t e r i s t i c  d i m e n s i o n s  5 ~ x ~ O(e 3 /4)  ~ 1, y ~ O(c)  ~ 6. I n  t h i s  
r e g i o n ,  we i n t r o d u c e  new i n d e p e n d e n t  v a r i a b l e s  and new a s y m p t o t i c  e x p a n s i o n s  o f  t h e  f low 
f u n c t i o n s  

X = ~3/4X2, y = $Y2, 

U = U20(g2) t J -  gl/Iu21 "~  . . . .  V = el/2V21 - ~  . . . ,  p = P20(g2) ~ -  e l / tp21 ~ -  " . ,  (2.5) 
P = Po + el/~2 + .... T = T2o(g~) "~- el/4T21 q- ..., 

c = qo(Y2) § sl/~c21 + .... 
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where u20(y2), P20(Y2), T20(Yz), and c20(y 2) are the profiles of longitudinal velocity, 
density, temperature, and the mass concentration of atoms in the undisturbed boundary layer 
on the plate ahead of the point of discontinuity of the boundary conditions. Substitution 
of expansions (2.5) into the Navier-Stokes equations and the mass conservation equation 
(see [17], for example) and passage to the limit e + 0 show that, in the first approxima- 
tion, the flow in region 2 is described by the system of equations 

8u21 0921 -~ OVal 12 d92~ O, OU21 dU20 
P~o~x~ + U.,o Ox 2 ----- ~ + - - -  O, 

0~21 dr2o 0c21 dc2o 
op~ = O, U~o-~x + ~ - -  0 ,  ~ + - - = 0 ,  Oy----z /221 dY 2 - -  I~2~ i)x 2 /'221 dY 2 

which allows partial integration 

u ~  = Ddu~o/dy~, v ~  = --u~odD/dx~, 9~  = DdP~o/dY~, 

T,~ = DdT=o/dY~, c,~ = D d c J d y ~ ,  p~ = p~(x~) ( 2 . 6 )  

[D = D(x~)  i s  an a r b i t r a r y  f u n c t i o n ] .  

In the viscous, heat-c0nducting, and diffusion boundary layer 3, with the characteris- 
tic dimensions 6 << x ~ O(r s/u) << 1 and y ~ O(e s/~) << 6, we introduce the following inde- 
pendent variables and asymptotic expansions of the flow functions 

X = ea/lX3, y ~- 85/4y31 U = 81/1U3 ~- .... v = e3/4~) 3 ~-- . . . .  
( 2 . 7 )  

9 = P~ -~ .... P = PO -~ 81/2pa "4- . . . ,  T = Tao -~ el/aT,1 + . . . .  

C ~ C30 ~- ,~1/4C31 -~ . . .  

Substitution of expansions (2.7) into the Navier-Stokes equations and mass conservation 
equation and passage to the limit e + 0 show that, in the first approximation, flow in 
boundary layer 3 is described by the equations of a compressible boundary layer 

or. _ ( at ,0_ _ at30 ) o ( 0c,~ p.T.o(I ( 2 . 8 )  

( o r , ~  Or,ok o c 0%00c.0 

( c p l ,  Cp2, Cp a r e  t h e  i s o b a r i c  h e a t  c a p a c i t i e s  o f  t h e  a t o m i c  and m o l e c u l a r  componen t s  and 

t h e i r  m i x t u r e ,  r e s p e c t i v e l y . )  I t  i s  e v i d e n t  f rom Eq. ( 2 . 7 )  t h a t  t h e  t e r m s  which  d e s c r i b e  
b a r o d i f f u s i o n  ~E2O2p]Bx 2 ~ ~ << puBc/bx  ~ e ; I [ 2  and L e n g t h w i s e  d i f f u s i o n  ~EZO2c/Bx 2 ~ ~1/2<< 
EZBZc/By2 ~ m - l / z  s h o u l d  n o t  be  in  Eq. ( 2 . 8 ) .  

The e x t e r n a l  b o u n d a r y  c o n d i t i o n s  a r e  o b t a i n e d  by c o m b i n i n g  t h e  a s y m p t o t i c  e x p a n s i o n s  
o f  f l o w  f u n c t i o n s  ( 2 . 5 )  and ( 2 . 7 )  i n  r e g i o n s  2 and 3 [ w i t h  t h e  u s e  o f  Eqs .  ( 2 . 6 ) ]  

u 3 ~ A ( y ,  A- D) ,  Tao --+ T2o(O), cao -~ C2o(O) (y, -+  cr ( 2 . 9 )  

(A = du20/dy 2 for Y2 = 0), while the condition for determination of the pressure is obtained 
by combining the asymptotic expansions for pressure (2.1), (2.5), and (2.7) in regions I, 
2, and 3 [with the use of Eqs. (2.4) and (2.6)] 

Pa (xs) = P3 (x2) --  Pl (xl, O) = v~ (Zl, O) V21 (xa, co) dD/dx 2 (2.io) 

The initial boundary conditions are derived from combining the above with the wall 
portion of the undisturbed boundary layer on the plate: 

u3 ~ AY3, Y~o -~ T20(0), cs0 -+ c20(0), P~, D -+ 0 (x 3 -~ --co).  ( 2 . 1 1 )  

C o n d i t i o n s  o f  a d h e s i o n  and i m p e r m e a b i l i t y  s h o u l d  be s a t i s f i e d  on t h e  p l a t e  s u r f a c e  
f o r  t h e  c o m p o n e n t s  o f  v e l o c i t y  

u 8-=v 3-~0(g3 =0) .  (2 .12)  
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If the origin of the coordinates of region 3 is placed at the point where the temperature 
and catalytic properties of the plate surface change suddenly, then the conditions for the 
temperature on the surface are written in the form 

T3o : T~o(0 ) ( ~  < 0), Tso = (l + a)r2o(0 ) (x~ ~ 0, g3 = 0). ( 2 . 1 3 )  

Here, the parameter a > -i characterizes the size of the pressure change. 

The condition for the mass concentration of atoms on the catalytic surface is as fol- 
lows [17] for the investigated case of flow about a plate 

Oc/Og = Sc kpc/e~, (2.14) 

where the coefficient characterizing catalytic activity k = e~K, K ~ O(i). Since the flow 
in the investigated region is chemically "frozen," it makes sense to deal only with those 
cases in which the plate surface ahead of the point of boundary-condition discontinuity is 
not ideally catalytic (i.e., c20(0) > 0 and B = I). Otherwise, the atomic component will 
be absent from region 3. Then, in the variables for region 3, boundary condition (2.14) 
will have the following form at x 3 < 0 

OCao/Oy a = 0 ( x 3 < O ,  y3 = 0). ( 2 . 1 5 )  

It immediately follows from Eqs. (2.8) and boundary conditions (2.9), (2.11), (2.13), and 
(2.15) that 

Go(X~, y~) =-- Go(o), ~o(X~, y~) = C~o(O) (~ < 0). (2 .16)  

It is obvious that a nontrivia! solution for the mass concentration of the atoms at 
x 3 > 0 can be found only with values of the parameter $ ~ 3/4. Then, in the variables 
for region 3, boundary condition (2.14) is represented in the form 

OcJOy 3 ~ Sc Kpac3~ or %0 = 0 ( ~ 0 ,  Y3 = 0). ( 2 . 1 7 )  

At x s < 0 and with satisfaction of Eq. (2.16), it is best to examine the following terms 
of expansions (2.7) for the temperature and mass concentration of atoms 

= - -  , p a c p [ u ~ 0 ~ .  + v a - ~ . ~ j  = a y 3 \ p r  0v3/ .  ( 2 . 1 8 )  
\ 3 3 + .3 ~ y3 / 

It is evident that barodiffusion and lengthwise diffusion are unimportant in this approxi- 
mation as well. 

The external boundary conditions for the functions caz and Tal are derived by combining 
the asymptoti c expansions of the flow functions (2.5) and (2.7) in regions 2 and 3 [with 
the use of Eqs. (2.6)]: 

r3~ --+ B(ya + D), c a ~ C(ys + D) (Y3 -+ ~ ) ,  ( 2 . 1 9 )  

w h e r e  B = d T 2 o / d y 2  and  C = d c 2 o / d y ~  a t  Y2 = 0.  We f i n d  t h e  i n i t i a l  c o n d i t i o n s  by  c o m b i n i n g  
the above with the wall portion of the undisturbed boundary layer on the plate: 

T3~ --+ By3, ca -+ CYa (x3 -+  - - ~ ) .  ( 2 . 2 0 )  

On the plate surface, the functions c3~ and Taz must satisfy the conditions 

Oca~/Oy 3 = C, T a = 0 ( ~  < 0, Ya = 0). ( 2 . 2 1 )  

I n  t h e  v a r i a b l e s  ( 2 . 7 ) ,  t h e  s h e a r  s t r e s s  x and  h e a t  f l u x  q a r e  e x p r e s s e d  by  t h e  f o r m u l a s  

T --- e~tOua/Og 3 + .... --q = eal~ql -~" eq2 + .... 

- ~/r~~ )1 ~ ago ~%o~ [ ql=  ( %  - -  % )  dr  + ho , 

- \/T3~ ) 1  ora ~ [ 
c  +Loo 3  

( 2 . 2 2 )  
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Here, Le is the Lewis-Semenov number: h ~ is the dimensionless heat of formation of the 
atoms. Equations (2.22) show that the distribution of the heat flux q at x 3 < 0 is des- 
cribed by the second term [see Eq. (2.16)], whichisofthesameorder as the heat flux in 
the undisturbed boundary layer on the plate. The sudden change in the temperature and 
catalytic properties of the surface lead to a change in order of magnitude of the heat flux, 
and at x 3 ~ 0 its distribution will be determined mainly by the first term. 

To reduce boundary-value problem ( 2.8)- (2.13), (2.15), (2.17) - (2.21 ) to a form convenient 
for numerical integration, we make the substitution of variables 

Ys 

x 8 
[. % 

x = z~, 1] = -~ _ P3 dYs, ~ = ~ , ,  Oy~ 
;$ 

0 

%19* _ TraP* Ps r3~ co=  T~ (2 23) 
p = p-~, c~ = c~ ,  T1 = r~  ~ (o) p + % (o)]' c---~-'  - -  - ~ w ,  

d - -  Dp* p,  ----- Po X* ----- p,-1/4 (M 2 _ i)-Z/SA-S/a, 
- -  .q--~-, r~o(O ) [1+%o(0)]'  

~). = p.l / ,  (M" --  I) -I/8 A -8/~, Xb* = P *-1/* (M 2 --  1) -1/* A -1/2, P* "= AU20 *-1/2 (M* --  t) -~/* 

and we adopt the simplifying assumptions [17] 

Ts0 

Pa~ = t, Pr, Sc, cp = const, S ( e p l - - c ~ ) d T  << h~ ( 2 . 2 4 )  
0 

Then, with assumptions (2.24), the boundary-value problem is written in the following 
standard form in variables (2.23) 

~2"' = - - d " ( t  + cl)T1 + ~;'~'" - -  ~2"~2 ' ' ,  
c / ' / Sc  = ~p' c~" - -  , ' e l ,  T , " /Pr  = ~;' T'i - -  ~" Ti ' ,  i = ~, 2, 

, ( x ,  O) = O, , ' ( x ,  O) = O, c~'(x, O) = t ,  r d x ,  O) = O, 

c l ( x , O ) = F  % (~'0) t+~z 
i + % (x, 0)' T, (x, 0) = 1 + %0 (0) (x > /0 ) ,  ( 2 . 2 5 )  

o o  

~p' (x, oo)-+ r~ (t + cO d~l + d, c 1 (x, oo)-+ C~o (0), T~ (x, oo)-~ i + %0 (0)' 
0 

cJ(x, oo) .-+ t ,  T, '(x,  oo) -+ t ,  , ( - - o o ,  ~1) ~ ~ / 2 ,  c~(--oo, ~) -+ ~, 

Td--oo ,  ~l) - "  ~i, d(--oo) -, .  O, c # ,  ~1) = c2o(0), 

Tl(x, ~1) = ~1(t + c~o(0)) (x < 0), F = (M ~ a'11/8 as/4,#,~/4 
- - ,  - -  -~o (o) ( i  + ~z) [ i  + %0 (~ u c  

Here, ( )" = a/ax; ( )' = a/an; F is the local Damkohler number. Meanwhile, the formulas 
for the shear stress and heat flux (2.22) reduce to the form 

= * "  + .... ql = TI' + Le Elcl ' ,  q~ = T (  + Le E~c(, 

E 1 = h~ [i + c~o(0 ) ], E~ ---- Ch~ ( 2 . 26 )  

where ~, qz, and q2 are additionally referred to the quantities cA/p*, cpT20(0)[l + c20(0)]/ 

Pr ~* and cpB/Pr p*, respectively. The similarity parameters E1 and E 2 characterize the 
ratio of the heat-flux components due to heat conduction and energy transport by the dif- 
fusing constituents of the gas mixture. 

Intensification of the catalytic activity of the plate surface at x _> 0 should obvious- 
ly lead to a reduction in the mass concentration of atoms near this surface, i.e., cl(x, 
0) + 0 at x + ~. Then the use of the variables 

n : ~l/(3x) l/s, ~ --- (3x)2/s(~ + J2 + 7d~), d = (3x)1/371 ( 2 . 2 7 )  

makes i t  p o s s i b l e  t o  r educe  b o u n d a r y - v a l u e  problem ( 2 .2 5 )  t o  a s i m i l a r i t y  problem ( w i t h  
X -> Go) 

dS~ + 2(~o + 71 n + "]'2) d2~ (d~ I dcp de-.---. ~ dn--.-- ~ --  ~ + 271 + 2J / ~ + 2T1 (1 + cl)~ = 

~ [ r l ( i  + c~.)]-  2T1(1 + c l ) (Vln+  J~), = (71 + l ) -  - - ~  
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t d2cl dc 1 i d2T1 dT1 
Se dn ~ + 2(~ + 71n + J~)-~- = 0, p-? dn-- q- + 2(~ + 71n + J2) q-~ = 0, ( 2 . 2 8 )  

r = 0 ,  dr  = - - ? 1 ,  cl = 0 ,  T I = ( t  + a ) / [ l  +c~0(0 )1 (n = 0 ) ,  
d~/dn  = O, # r  2 = 0, c 1 = c~0(0), T1 = t / [ t  + c20(0)1 ( n - ~  oo), 

n n 

i =  S r l0  + c )dn, y y r l0  + cl)dndn 
0 0 

One f e a t u r e  o f  b o u n d a r y - v a l u e  p rob l em  ( 2 . 2 8 )  i s  t h e  a b s e n c e  o f  t h e  t e rm  w i t h  t h e  l o n g i -  
t u d i n a l  p r e s s u r e  g r a d i e n t .  T h e r e  i s  a l s o  a n o t h e r  unknown p a r a m e t e r  N~, which  i s  found  f r o m  
t h e  s o l u t i o n  o f  t h i s  p rob l em.  The form o f  t h e  v a r i a b l e s  ( 2 . 2 7 )  shows t h a t  a t  x § ~ t h e  
s h e a r  s t r e s s  T [ s e e  Eq. ( 2 . 2 5 ) ]  a p p r o a c h e s  i t s  v a l u e  in  t h e  u n d i s t u r b e d  b o u n d a ry  l a y e r  on 
t h e  p l a t e  ahead  o f  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  o f  b o u n d a r y - c o n d i t i o n  d i s c o n t i n u i t y .  M e a n -  
w h i l e ,  t h e  h e a t  f l u x  qz d e c r e a s e s  in  a c c o r d a n c e  w i t h  t h e  law 

t [dT1 dcl ~ 
= r  = dg--~ ~ T~(! + Cl), q l = ~ I - - ~ +  L e E 1 - - ~ ) .  ( 2 . 2 9 )  

The a s y m p t o t e  o f  s o l u t i o n s  o f  b o u n d a r y - v a l u e  p ro b l em s  o f  t h e  t y p e  ( 2 . 2 5 )  a t  x § - ~  
was s t u d i e d  in  [ 1 3 ] .  E q u a t i o n s  ( 2 . 2 7 )  a r e  f u n c t i o n a l l y  s i m i l a r  t o  t h e  e x p a n s i o n s  c o n s t r u c t -  
ed in  [6 ,  7] f o r  t h e  i n t e r n a l  bounda ry  l a y e r  i m m e d i a t e l y  beyond t h e  p o i n t  o f  d i s c o n t i n u i t y  
o f  t h e  p r o p e r t i e s  o f  t h e  p l a t e  s u r f a c e .  However ,  t h e  a u t h o r s  o f  t h e s e  s t u d i e s  d i d  n o t  con-  
s i d e r  t h e  e f f e c t  o f  t h e  change  in  t h e  p r o p e r t i e s  o f  t h e  s u r f a c e  on t h e  p e r t u r b a t i o n s  o f  
p r e s s u r e ,  s h e a r  s t r e s s ,  and h e a t  f l u x ,  i . e . ,  t h e y  o n l y  examined  c a s e s  f o r  a r em o v ab l e  d i s -  
continuity. 

3. To analyze the solution of boundary-value problem (2.25) at x § 0, it is necessary 
to additionally study region 4. This region, located around the sudden change in the tem- 
perature and catalytic properties of the plate surface, has a size characterized as e3/2 < 
x < ea/~. If the change in the characteristics of the plate surface do not result in separ- 
ation of the boundary layer, then the same relations that were valid for region 3 are valid 
for the nonlinear viscous, heat-conducting, and diffusion region 4. Region 4 is located 
entirely within region 3, and the external flow for region 4 is the flow in the wall part 

of region 3 at x s § -0: 

Po T~o = T2o (0), c~o = c~o (0). (3 1 ) 
u3 = Awya, v~ = O, P3 = P~,P8 -- T2o(0)[t+%o(0)~' 

Here, A w = (Su3/Sya)w; the subscript w denotes quantities at the surface of the plate with 
x~ § -0. The independent variables and asymptotic expansions of the flow functions (2.7) 

are valid in region 4 
x = Axx  4, y = eAxV3y~, 

( 3 . 2 )  
u = hxV3u4 + . . . .  v = (e/Axl /Dv4 + . . . .  P = P4 + . . . .  c = c~o + ....  

P = Po + el/2P~ + Ax~/aP4 + . . . .  T = T4o + ... 

S u b s t i t u t i o n  o f  Eq. ( 3 . 2 )  i n t o  t h e  N a v i e r - S t o k e s  e q u a t i o n s  and t h e  mass c o n s e r v a t i o n  
equation and passage to the limit e + 0, ~3/2 < Ax < e 3 / 4  shows that, in the first approxi- 
mation, the flow in region 4 is described by equations of the form (2.8) (the subscript 3 
should be replaced by 4). The external and initial boundary conditions are obtained by 
combining expansions (3.2) with the wall part of region 3 at x 3 § -0 (3.1) and have the 
form (2.9), (2.11) (the subscript 3 is replaced by 4, D ~ 0, and we use A w instead of A). 

In order to obtain a nontrivial solution to the mass conservation equation at x~ > 0, 
it is necessary that e$ Z ~/Ax z/~. For lower values of the catalytic activity coefficient, 
there will not be sufficient time for the mass concentration of atoms to change its order 
of magnitude over the interval ~/~ < Ax < e ~/u. Then the boundary conditions on the plate 
surface take the form (2.12), (2.13), (2.15), (2.17) (with the corresponding replacement 

of 3 by 4). 

There will be no interaction with the uniform supersonic incoming flow in this case, 
since otherwise hp ~ Ay/Ax ~ e/Ax 2/s > &x ~/a would be induced at Ax < e ~/~. Thus, a com- 
pensative flow regime is realized in region 4 [15]. Here, the change in the thickness of 
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region 4 is, in a first approximation, compensated for by the change in the thickness of 
the wall part of the flow in region 3 immediately ahead of the point where the properties 
of the plate surface change. It was found in [15] that, in this case, the induced pressure 
disturbance is determined from the relation 

p,o(0)A~ v 4 + dpJdx 4 --~ 0 (Y4 -+ ~) .  (3 .3 )  

A c h a r a c t e r i s t i c  f e a t u r e  of  boundary -va lue  problem ( 2 . 8 ) ,  ( 2 . 9 ) ,  ( 2 . 1 1 ) - ( 2 . 1 3 ) ,  ( 2 . 1 5 ) ,  
(2.17) (after the substitution of 4 for 3, A w for A, and D ~ 0) and Eq. (3.3) is the latter 
compensating condition of the interaction for determination of the pressure perturbation. 
However, the order of Eq. (3.3) is no greater than the order of the derivatives, with 
respect to the longitudinal coordinate, that enter into this problem, andthe condition 
does not induce perturbations ahead of the point of discontinuity of the boundary conditions 
[15] (the problem remains parabolic). As a result, initial boundary conditions can be 
assigned at x~ = 0 and we can study the solution at x~ > 0. Equations (2.22) for the shear 
stress ~ and the heat flux q take the following form in variables (3.2) 

(? 0 ); 
T ~ e~ Ou4 S ~t F OT4o Oc4o (3.4) __+ Le 7 (%_%)dr + ho 

--% + . . . .  -- q = ~ F~ L c p  oy 4 

I n t r o d u c t i o n  of  the  new v a r i a b l e s  
Ya 

X 4 i [ z =  x ' - C , n = ~ .  . p4dy4, ~ , =  ~*(3x)'~(~ + 12), 
0 

894 , 0r p* (3x)2/a q T1 = T4o (3 .5 )  
--ay 4 = P4-~, ~ = - -  P4v4, P4 = ?~' = C4o' r2o (o) [ i  + %0 0)]' 

= (0) = (0) p* = (0) 
and the  use  of  s i m p l i f y i n g  assumpt ions  (2 .24 )  makes i t  p o s s i b l e  to  reduce  bounda ry -va lue  
problem ( 2 . 8 ) ,  ( 2 . 9 ) ,  ( 2 . 1 1 ) - ( 2 . 1 3 ) ,  ( 2 . 1 5 ) ,  ( 2 .17 )  [wi th  the  co r r e spond ing  changes f o r  
r eg ion  4] ,  and (3 .3 )  in p a r t i a l  d e r i v a t i v e s  to  the  s i m i l a r i t y  problem 

d S @ - . d ' ~ ( d ~ ) d ~  d 
- -  __ __ - ~  [Yl  d~ + 2 (~ + J2) ~ ~ + 2J 7~ + 2T~ (t + c~) ~ = J~ (1 + c~)] - -  2T~ (1 + c~) (J2 + ?2), 

t d2cl dCl i d2T1 dT 1 
dn ~ + 2 (~ + J2) ~-~ = 0, Pr dn ~ + 2 (~ + J2) -~- = 0, ( 3 . 6 )  

= O, d~/dn = 0, cl = 0, r 1 = (t + a)/[t + %0(0)] (n = 0), 

-~- ?~, d2~/dn ~ ----- 0, C 1 ~ C20(0 ) ,  T~ = t / [ t  + %0(0)1 (n -~ ~) ,  

where ?~ i s  an a d d i t i o n a l  unknown paramete r  found from the  s o l u t i o n  of  t h i s  problem. I t  
i s  e v i d e n t  t h a t  a t  e~ ~ e /5x z/~,  ga/2 < Ax < ga/~ the  s o l u t i o n  of  bounda ry -va lue  problem 
(3 .6 )  d e s c r i b e s  the  a sympto t i c  behav io r  of  the  s o l u t i o n  of  the  i n i t i a l  n o n s i m i l a r  boundary-  
va lue  problem f o r  r eg ion  4 when c~0(x~, 0) + 0, i . e . ,  when x~ + ~, whi le  a t  ~ > r ~ /s ,  
~s/~ < hx < Ca/~, i . e . ,  when c~0(x ~, 0) ~ 0 t h e s e  boundary -va lue  problems a re  i d e n t i c a l .  
In the  v a r i a b l e s  ( 3 . 5 ) ,  Eqs. ( 3 .4 )  f o r  �9 and q t ake  the  form 

t (d~; d%\ 
d~ + T~( t+c~)+ , - - q = ~ k ' ~ n  + L e E l - ~ n ) +  (3.7) 

- -  d~ . . . . . .  

Here, ~ and q are additionally referred to as eAw/P~0(0) and (e/Ax~/a)Cp T20(0)[l + C20(0)]/ 
Pr q*, respectively. Equations (3.7) determine the behavior of the solution of boundary- 
value problem (2.25) at x + +0. It can be seen that Eq. (3.5) and the expansions construct- 
ed in [6, 7] for a small region behind the point of discontinuity of surface catalytic pro- 
perties are functionally similar. As was noted above, such a flow scheme is valid only 
for a removable surface-property discontinuity. In the general case, it is necessary to 
solve self-similar boundary-value problem (3.6), which also determines the initial condi- 
tions for the internal layer behind the point of boundary-condition discontinuity. 

Boundary-value problem (3.6) describes the sudden change in the flow functions with 
the transition past the point of discontinuity of the boundary conditions on the plate 
surface. In order to study a neighborhood of this point even smaller than regions 3 and 
4, in accordance with the method of combinable asymptotic expansions [12] it is necessary 
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to examine a region whose characteristic length and thickness are of the same order of 
magnitude - Ax ~ Ay. Estimates (i.i) show that in this case Ax ~ Ay ~ O(cS/2), u ~ v ~ 
O(Ez/2), Ap ~ O(E), and the flow is described by the complete system of Navier-Stokes equa- 
tions and conservation equation for the mass concentration of atoms with variable density. 
Only in this region does lengthwise diffusion become important, i.e., the term ~82c/8x 2 
appears. However, the condition of adhesion on the plate surface will no longer be satis- 
fied, since, due to the finite perturbation of temperature or the mass concentration of 
atoms AT ~ T ~ Ac ~ c ~ 0(i), a slip velocity U ~ g28T/~x ~ O(g I/2) which is comparable 
to the gas flow velocity develops. Other phenomena of molecular gas dynamics will also 
be important [19]. Thus, allowing for lengthwise diffusion- as was done in [8-11] - is 
justified only for removable discontinuities of plate surface properties. 

4. In the numerical integration of boundary-value problem (2.25), interaction of the 
flows in regions 3 and 1 make it necessary to determine the induced pressure during the 
computation. Allowance for the interaction gives the problem the property of slight ellip- 
ticity [13], and in order to obtain a unique solution it is necessary to assign an addition- 
al boundary condition where x + ~ [it follows from the form of the variables (2.27) that 
p § 0 at x + ~]. Also, due to the discontinuity of the internal boundary conditions at 
x = 0 in the theoretical region, for x > 0 it is necessary to introduce a subregion around 
the surface of the plate and develop a special procedure for performing calculations in 
two regions [20, 21]. 

Numerical calculations of boundary-value problem (2.25) were performed with the follow- 
ing as the governing similarity parameters: 

i )  F = I / ~ r 2  " ,  = = O, c2o(0 )  : i ;  

2) F § =, a = 0, c20(0) = I; 

3) F = 0, ~ = i, c20(0) = i. 

With a constant temperature for the plate surface (variants i and 2), a reduction in 
the concentration of atoms near the catalytic surface causes an increase in density and 
displacement of the streamlines toward the plate surface, i.e., an effective depression 
is formed here and low-pressure flow is realized. An increase in the temperature of the 
surface, conversely, causes a reduction in the density of the gas and displacment of the 
streamlines upward from the plate (variant 3). In this case, the flow move@ around an 
effective projection and compressional flow is realized. 

Lines i-3 in Figs. 1-4 correspond to the numbers of the variants. The behavior of 
the solution of boundary-value problem (2.25) at x +-~ was studied in [13], while at x § 
-0 all of the flow functions change in a nonsingular manner and take finite values. 

Figure I shows the distribution of induced pressure p. The character of the pressure 
change at x § +0 is determined by Eq. (3.5). Numerical solution of boundary-value problem 
(3.6) makes it possible to find values of unknown parameter T2 = 0.22912 and -0.46593 for 
variants 2 and 3, respectively. At x + ~, the distribution of the pressure perturbation 
is described by Eq. (2.27) (p = -d'), while values of the unknown parameter Tz = 0.46094 
and -0.81717 are obtained from numerical solution of boundary-value problem (2.28) for 
variants 2 and 3. 

Figure 2 shows the distributions of shear stress % along the plate surface. The value 
of % increases in front of the point of boundary-condition discontinuity in the case of low- 
pressure flow (curves 1 and 2), while it decreases in the case of compressional flow (curve 
3)~ Solution of local boundry-vlue problem (3.6) at x + +0 yields a subsonic shear flow with 
variable density moving past an effective depression (variants i, 2) or projection (variant 
3). Thus, at x + +0, % decreases sharply in the first case and increases in the second. The 
distribution of % is continuous for variant i, while for variants 2 and 3 the solution of 
boundary-value problem (3.6) yields a shear stress with % = 0.720 and 0.964 at x + +0, re- 
spectively. These values agree well with the results of integration of boundry-value problem 
(2.25). At x + ~, the shear stress approaches its value in the undisturbed boundary layer on 
the plate in front of the point of boundary-condition discontinuity (% + I). 

An analysis of curve 2 shows that the maximum possible sudden increase in the cataly- 
tic activity of the surface corresponds to an increase in the shear stress by a factor of 
about 1.5 at x + -0. A sudden increase in the temperature of the surface by a factor of 
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two lowers ~ to 0.4 at x + -0 (curve 3), whilean increase in temperature by a factor of 
about 3.87 leads to the beginning of boundary-layer separation [16]. 

Figures 3 and 4 show the distributions of the normal gradients of temperature T i' and 
the mass concentration of atoms c i' over the surface of the plate (i = 1 for the solid 
lines, i = 2 for the dashed lines). It is evident that a sudden increase in the catalytic 
activity of the plate surface only slightly alters the normal gradient of temperature T=' 
(curves i and 2). A sudden doubling of surface temperature lowers T=' by about 20% at x + 
-0 (dashed curve 3). At x > 0, the highly heated surface is cooled by the incoming flow. 
Here, the normal temperature gradient changes in order of magnitude and T z' < 0 (solid 
curve 3). At x + ~, perturbations from the sudden change in surface properties die out 
andT z' + 0, T 2' + i. 

The distributions of c 2' at x g 0 are similar to the distributions of �9 or T 2' for 
the corresponding variants (dashed lines 1-3 in Fig. 4). A sudden increase in the catalytic 
activity of the surface at x > 0 increases the order of magnitude of the normal gradient 
of the mass concentration of atoms [solid lines i and 2, Eq. (2.22)]. A sudden doubling 
of the surface temperature only slightly changes the distribution of c 2' (line 3), and at 
X ~ ~, Cl ! + 0, C2 ! ~ i. 

The qualitative similarity between the results of our calculations and those presented 
in [6, 7], for example, follows from the functional similarity of the representations of 
the solutions. A quantitative comparison of these two sets of results is impossible, how- 
ever, since different initial conditions and length scales were used in the calculations. 

We express thanks to O. G. Fridlender for his helpful consultations. 
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